An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM

نویسندگان

  • Björn Andres
  • Jörg H. Kappes
  • Ullrich Köthe
  • Christoph Schnörr
  • Fred A. Hamprecht
چکیده

Graphical models with higher order factors are an important tool for pattern recognition that has recently attracted considerable attention. Inference based on such models is challenging both from the view point of software design and optimization theory. In this article, we use the new C++ template library OpenGM to empirically compare inference algorithms on a set of synthetic and real-world graphical models with higher order factors that are used in computer vision. While inference algorithms have been studied intensively for graphical models with second order factors, an empirical comparison for higher order models has so far been missing. This article presents a first set of experiments that intends to fill this gap.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OpenGM: A C++ Library for Discrete Graphical Models

OpenGM is a C++ template library for defining discrete graphical models and performing inference on these models, using a wide range of state-of-the-art algorithms. No restrictions are imposed on the factor graph to allow for higher-order factors and arbitrary neighborhood structures. Large models with repetitive structure are handled efficiently because (i) functions that occur repeatedly need...

متن کامل

Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms

One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the m...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

An Empirical Evaluation of Algorithms for Computing Equilibria in Games for Approximate Inference in Large Dimensional Probabilistic Graphical Models

Work in graphical models for game theory typically borrows from results in probabilistic graphical models. In this work, we instead consider the opposite direction. By using recent advances in equilibrium computation, we propose game-theoretic inspired, practical methods to perform probabilistic inference. We perform synthetic experiments using several different classes of Ising models, in orde...

متن کامل

Constraint Processing in Lifted Probabilistic Inference

First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010